A long straight cable of length l is placed symmetrically along the z-axis and has radius a(<<l). The cable consists of a thin wire and a co-axial conducting tube. An alternating current It=Iosin2πνt flows down the central thin wire and returns along the co-axial conducting tube. The induced electric field at a distance s from the wire inside the cable is:

E(s,t)=μ0I0νcos(2πνt)lnsak^.

(i) Calculate the displacement current density inside the cable.
(ii) Integrate the displacement current density across the cross-section of the cable to find the total displacement current Id.
(iii) Compare the conduction current I0 with the displacement current I0d.

Hint: The displacement current density depends on the variation of the electric field between the plates of the capacitor.
(i)Step 1:Given,theinducedelectricfieldatadistanerfromthewireinsidethecableis:
E(s,t)=μ0I0νcos(2πνt)lnsak^
Now,displacementcurrentdensity,
Jd=ε0dEdt=ε0ddtμ0I0νcos(2πνt)lnsak^
=ε0μ0I0νddt[cos2πνt]Insak^
=1c2I0ν2×2π[-sin2πνt]Insak^
=ν2C22πI0sin2πνtInask^lnsa=-llnas
=1λ22πI0Inassin2πνtk^
=2πI0λ2Inassin2πνtk^
Step 2: Id=Jdsdsdθ=s=0aJdsds×02π=s=0aJdsds×2π
=s=0a2πλ2I0logeassds×sin2πνt×2π
=2πλ2I0s=0alnassds×sin2πνt
=2πλ2I0s=0aInas12d(s2).sin2πνt
=a222πλ2I0sin2πνts=0aInas.dsa2
=a242πλ2I0sin2πνts=0aInas2.dsa2
=-a242πλ2I0sin2πνts=0aInsa2.dsa2
=-a242πλ2I0sin2πνt×(-1)s=0aInsa2dsa2=-1
Id=a242πλ2I0sin2πνt
=πaλ2I0sin2πνt
Step 3:Thedisplacementcurrent,
Id=πaλ2I0sin2πνt=I0dsin2πνt
Here,
I0d=πaλ2I0
I0dI0=λ2