A plane EM wave travelling along z-direction is given by E=E0sin(kz-ωt)i^andB=B0sin(kz-ωt)j^.Showthat:

iEvaluateE.dlovertherectangularloop1234showninfigure.
iiEvaluateB.dsoverthesurfaceboundedloop1234.
iiiUseequationE.dl=-BdttoproveEoBo=c.
ivByusingB.ds=μoI+εoEdt,provethatc=1μoεo.

                

Hint: The electromagnetic wave propagates perpendicular to both the electric field and the magnetic field.
(I) Step 1: Consider the figure given below.
During the propagation of electromagnetic wave along z-axis, let electric field vector E be along x-axis and magnetic field vector B along the y-axis, i.e., E=E0i^andB=B0i^.
Line integral of E over the closed rectangular path 1234 in the x-z plane of the figure;
E·dl=12E·dl+23E·dl+34E·dl+41E·dl
=12Edlcos90°+23Edlcos0°+34Edlcos90°+41Edlcos180°
=E0hsin(kz2-ωt)-sin(kz1-ωt)
(ii)Step 2: ForevaluatingB·ds,letusconsidertherectangle1234tobemadeofstripsofareds=hdzeach.
B·ds=B·dscos0°=B·ds=z1z2B0sin(kz-ωt)hdz
=-B0hk[cos(kz2-ωt)-cos(kz1-ωt)]
(iii)Step 3: Given,E·dl=-edt=-ddtB·ds
PuttingthevaluesfromEqs.(i)and(ii),weget;
E0h[sin(kz2-ωt)-sin(kz1-ωt)]
=-ddtB0hk{cos(kz2-ωt)-cos(kz1-ωt)
=B0hkω[sin(kz2-ωt)-sin(kz1-ωt)]
E0=B0ωk=B0c
E0B0=c
(iv)Step 4:ForevaluatingB·dl,letusconsideraloop1234iny-zplaneasshowninfiguregivenbelow.
B·dl=12B·dl+23B·dl+34B·dl+41B·dl
=12Bdlcos0°+23Bdlcos90°+34Bdlcos180°+41Bdlcos90°
=B0h[sin(kz1-ωt)-sin(kz2-ωt)]...(iii)
NowtoevaluateϕE=E.ds,letusconsidertherectangle1234tobemadeofstripsofareahd2each.
ϕE=E·ds=Edscos0°=Eds=z1zE0sin(kz1-ωt)hdz
=-E0hk[cos(kz2-ωt)-cos(kz1-ωt)]
εdt=E0k[sin(kz1-ωt)-sin(kz2-ωt)]
InB·dl=μ0l+ε0Edt,I=conductioncurrent=0invacuum
B·dl=μ0ε0Edt
UsingrelationsobtainedinEqs.(iii)and(iv)andsimplifying,weget;
B0=Eoωμ0ε0k
E0B0ωK=1μ0ε0
But,E0B0=candω=ck
c.c=1μ0ε0,thereforec=1μ0ε0