The Bohr model for the H-atom relies on the Coulomb's law of electrostatics. Coulomb's law has not directly been verified for very short distances of the order of angstroms. Supposing Coulomb's law between two opposite charge +q1, -q2 is modified to

F=q1q2(4πε0)1r2,rR0
=q1q24πε01R02R0rε,rR0

Calculate in such a case, the ground state energy of a H-atom, if ε = 0.1, R0=1Å.

Hint: The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons provides the necessary centripetal force.
Step 1: Find the radius of the orbit of the electron in the ground state.
Considering the case, when rR0=1Å
Letε=2+δ
F=q1q24πε0R0δr2+δ
where,=q1q24πε0=(1.6×10-19)2×9×109
23.04×10-29Nm2
The electrostatic force of attraction between the positively charged nucleus and negatively charged electrons (Coulombian force) provides the necessary centripetal force.
F=mv2r=R0δr2+δorv2=R0δmr1+δ
mvr=r=mv=m[mR0δ]1/2r1/2+δ/2[ApplyingBohr'ssecondpostulates]
Solvingthisforr,weget
rn=[n2ħ2mR0δ]11-δwhere,rnisradiusofnthorbitofelectron.
Forn=1andsubstitutingthevaluesofconstant,weget
r1=[ħ2mR0δ]11-δ
r1=[1.052×10-689.1×10-31×2.3×10-28×10+19]12.9
=8×10-11
=0.08nm(<0.1nm)
This is the radius of orbit of the electron in the ground state of the hydrogen atom.
Step 2: Find the kinetic energy and the potential energy of the electron in the ground state.
vn=mrn=nħ(mR0δn2ħ2)11-δ
Forn=1,v1=ħmr1=1.44×106m/s[Thisisthespeedofelectroningroundstate]
KE=12mv12=9.43×10-19J=5.9eV[ThisistheKEofelectroningroundstate]
PEtillR0=-R0[ThisisthePEofelectroningroundstateatr=R0]
PEfromR0tor=+R0δR0rdrr2+δ=+R0δ-1-δ[1r1+δ]R0r[ThisisthePEofelectroningroundstateatR0tor]
=-R0δ1+δ[1r1+δ-1R01+δ]=-1+δ[R0δr1+δ-1R0]
PE=-1+δ[R0δr1+δ-1R0+1+δR0]
PE=--0.9[R0-1.9r-0.9-1.9R0]
=2.30.9×10-18[(0.8)0.9-1.9]J=-17.3eV
Total energy is (-17.3 + 5.9)=-11.4 eV
This is the required TE of an electron in the ground state.