A travelling harmonic wave on a string is described by yx,t=7.5sin0.0050x+12t+π4.

(a) what are the displacement and velocity of oscillation of a point at x = 1 cm, and t = 1 sec? Is this velocity equal to the velocity of wave propagation?

(b) Locate the points of the string which have the same transverse displacements and velocity as that of point at x = 1 cm and t = 2 s, 5 s and 11 s.

The given harmonic wave is:

yx,t=7.5sin0.0050x12t+π4
Forx=1cmandt=1s,
y1,1=7.5sin0.0050+12+π4
=7.5sin12.0050+π4
=7.5sinθ
where,θ=12.0050+π4=12.0050+3.144=12.79rad
=1803.14×12.79=732.81
y1,1=7.5sin(732.81)=7.5sin(90×8+12.81)=7.5sin12.81=7.5×0.2217=1.66291.663cm
Thevelocityoftheoscillation:
v=ddtyx,t=ddt7.5sin0.0050x+12t+π4=7.5×12cos0.0050x+12t+π4
Atx=1cmandt=1sec:
v(1,1)=90cos(12.005+π4)=90cos(732.81)=90cos(90×8+12.81)=90cos(12.81)=90×0.975=87.75cm/s
Now,comparingthegivenequationwiththeequationofapropagatingwave:
yx,t=asinkx+ωt+ϕ
So,
ω=12rad/s
k=0.0050m-1
v=120.0050=2400cm/s
Hence,thevelocityofthewaveoscillationatx=1cmandt=1s
isnotequaltothevelocityofthewavepropagation.
b
Propagationconstantisgivenby:
k=2πλ
λ=2πk=2×3.140.0050=1256cm=12.56m
Allthepointsatdistances,i.e.±12.56m,±25.12m,...wheren=±1,±2,...andsoon
willhavethesamedisplacementasthatofhepointatx=1cmatt=2s,5s,and11s.