The energy equivalent of 1 g of substance is :
1. \(11.2 \times 10^{24} \mathrm{MeV}\)
2. \(5.6 \times 10^{26} \mathrm{MeV}\)
3. \(5.6 \mathrm{eV}\)
4. \(5.6 \times 10^{12} \mathrm{MeV}\)

Subtopic:  Mass-Energy Equivalent |
 70%
JEE
Please attempt this question first.
Hints

The energy released in the fusion of 2 kg of hydrogen deep in the sun is \(E_H\) and the energy released in the fission of \(2\) kg of \(^{235}U\) is \(E_U\). The ratio \(E_H / E_U\).  is approximately:
(Consider the fusion reaction as \(4 \mid H+2 \mathrm{e}^{-} \rightarrow_2^4 \mathrm{He}+2 \mathrm{v}+6 \gamma+26.7\)  MeV, energy released in the fission reaction of \(235\) U is \(200\) MeV per fission nucleus and \(N_A=6.023 \times 10^{23}\))
1. \(7.62\)
2. \(15.04\)
3. \(25.6\)
4. \(9.13\)
 
Subtopic:  Nuclear Binding Energy |
JEE
Please attempt this question first.
Hints

A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of \(2:1\). After disintegration they will move:
1. in opposite directions with the same speed
2. in opposite directions with the speed in the ratio of \(1:2\) respectively.
3. in opposite directions with the speed in the ratio of \(2:1\) respectively.
4. in the same direction with same speed.

 
Subtopic:  Nucleus |
 84%
JEE
Please attempt this question first.
Hints

advertisementadvertisement

Binding energy of a certain nucleus is \(\mathrm{18\times 10^8J.}\) How much is the difference between total mass of all the nucleons and nuclear mass of the given nucleus:
1. \(\mathrm{0.2\mu g}\)
2. \(\mathrm{20\mu g}\)
3. \(\mathrm{10\mu g}\)
4. \(\mathrm{2\mu g}\)
Subtopic:  Nuclear Binding Energy |
 65%
JEE
Please attempt this question first.
Hints

Imagine that a reactor converts all given mass into energy and that it operates at a power level of \(10^{9}~\text{W}.\) The mass of the fuel consumed per hour in the reactor will be:
(velocity of light, \(c=3\times10^8~\text{m/s}) \)
1. \(4\times10^{-2}~\text{gm} \)
2. \(6.6\times10^{-5}~\text{gm} \)
3. \(0.8~\text{gm} \)
4. \(0.96~\text{gm} \)
Subtopic:  Mass-Energy Equivalent |
 77%
From NCERT
JEE
Please attempt this question first.
Hints

A solution containing active cobalt \(\frac{60}{27}~\text{Co}\) having activity of \(0.8 \mu~ \text {Ci} \) and decay constant \(\lambda \) is injected into an animal's body. If \(1~ \text{cm}^3\) of blood is drawn from the animal's body after \(10 ~\text{hr}\) of injection, the activity found was \(300\) decays per minute. What is the volume of blood that is flowing in the body?
(\(1~\text{Ci} = 3.7 \times 10^{10} \) decays per second and at \(t = 10 ~\text{hr},~~~ e^{-\lambda t} = 0.84 )\)
1. \(4 ~\text{liters}\)
2. \(6 ~\text{liters} \)
3. \(5 ~\text{liters}\)
4. \(7 ~\text{liters}\)
Subtopic:  Types of Decay |
JEE
Please attempt this question first.
Hints

advertisementadvertisement

Two deuterons undergo nuclear fusion to form a helium nucleus. The energy released in this process is:
(given binding energy per nucleon for deuteron \(=1.1~\text{MeV}\) and for helium \(=7.0~\text{MeV})\) 
1. \(19.2~\text{MeV}\)
2. \(23.6~\text{MeV}\)
3. \(26.9~\text{MeV}\)
4. \(13.9~\text{MeV}\)
Subtopic:  Nuclear Binding Energy |
 79%
From NCERT
JEE
Please attempt this question first.
Hints

Let \({N_B}\)  the number of \(\beta\) particles emitted by a gram of \({Na^{24}}\) radioactive nuclei (half-life \(=15\) hrs) in \(7.5\) hours, \({N_\beta}\) is close to:
(Avogadro number \(=6.023\times10^{23}/\text{g}.\) mole)
1. \(6.2\times10^{21}\)
2. \(7.5\times10^{21}\)
3. \(1.25\times10^{22}\)
4. \(1.75\times10^{22}\)
Subtopic:  Types of Decay |
From NCERT
Please attempt this question first.
Hints

In the given reaction, find the value of \({Q}\) Value.
\({ }_6 \mathrm{C}^{13} \longrightarrow {}_6\mathrm{C}^{12}+{ }_0 n^1+(Q\text{-value})\)
 Given: mass of \({ }_6 \mathrm{C}^{13} \Rightarrow x\)
 mass of \({ }_6 \mathrm{C}^{12} \Rightarrow y\)
 mass of \({ }_0 n^1 \Rightarrow z\)
1. \(({y}+{x}-{z} )~{c}^2\)
2. \(({y}+{z}-{x} )~{c}^2\)
3. \(({y}+{z}+{x} )~{c}^2\)
4. \(({z}+{x}-{y} )~{c}^2\)
Subtopic:  Nuclear Binding Energy |
 86%
From NCERT
JEE
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

If half life of a radioactive nuclide \(A\) is equal to average life of another radioactive nuclide \(B\). Find the ratio of decay constant of \(A\) to that of \(B\)
1. \(ln2 : 1\)
2. \(1 : ln2 \)
3. \(2 : ln2 \)
4. \(ln2 : 2\)
JEE
Please attempt this question first.
Hints