If \(\overrightarrow{\mathbf{A}}{=}{2}\hat{i}{+}{3}\hat{j}{+}{2}\hat{k}\;{and}\;\overrightarrow{\mathbf{A}}{-}\overrightarrow{\mathbf{B}}{=}{2}\hat{j}\), then find \(\left|{\overrightarrow{B}}\right|\)
1. 3 
2. \(3\sqrt{3}\)
3. 2 
4. \(\sqrt{3}\)
Subtopic:  Resultant of Vectors |
 86%
Level 1: 80%+
JEE
Please attempt this question first.
Hints

Two forces of magnitude \(A\) and \({A\over 2}\) act perpendicular to each other. The magnitude of the resultant force is equal to: 
1. \(\dfrac A2\) 2. \(\dfrac {\sqrt {5}A} { 2}\)
3. \(\dfrac {3A} {2}\) 4. \(\dfrac {5A} {2}\)
Subtopic:  Resultant of Vectors |
 84%
Level 1: 80%+
JEE
Please attempt this question first.
Hints
Please attempt this question first.

In a regular octagon \({ABCDEFGH},\) all sides are equal in length. The position vector of point \(A\) with respect to the center \(O\) of the octagon is given by: \(\overrightarrow{{AO}}=2 \hat{{i}}+3 \hat{{j}}-4 \hat{{k}}.\)
What is the value of the vector sum: \(\overrightarrow{{AB}}+\overrightarrow{{AC}}+\overrightarrow{{AD}}+\overrightarrow{{AE}}+\overrightarrow{{AF}}+\overrightarrow{{AG}}+\overrightarrow{{AH}} ~\text{?}\)

1. \( -16 \hat{i}-24 \hat{j}+32 \hat{k} \) 2. \( 16 \hat{i}+24 \hat{j}-32 \hat{k} \)
3. \( 16 \hat{i}+24 \hat{j}+32 \hat{k} \) 4. \(16 \hat{i}-24 \hat{j}+32 \hat{k} \)
Subtopic:  Resultant of Vectors |
 77%
Level 2: 60%+
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

Two vectors \(\vec A \) and \(\vec B\) have equal magnitudes. If the magnitude of \(\vec A + \vec B\) is equal to two times the magnitude of \(\vec A - \vec B\), then the angle between \(\vec A \) and \(\vec B\) will be:
1. \(\sin ^{-1}\left(\frac{3}{5}\right) \)
2. \(\sin ^{-1}\left(\frac{1}{3}\right) \)
3. \(\cos ^{-1}\left(\frac{3}{5}\right) \)
4. \(\cos ^{-1}\left(\frac{1}{3}\right)\)
Subtopic:  Resultant of Vectors |
 55%
Level 3: 35%-60%
JEE
Please attempt this question first.
Hints
Please attempt this question first.

Which of the following relations is true for two unit vectors \(\hat A\) and \(\hat B\) making an angle \(\theta\) to each other? 
1. \(|\hat{\mathrm{A}}+\hat{\mathrm{B}}|= |\hat{\mathrm{A}}-\hat{\mathrm{B}} \mid \tan \frac{\theta}{2} \)
2. \(|\hat{\mathrm{A}}-\hat{\mathrm{B}}|=|\hat{\mathrm{A}}+\hat{\mathrm{B}}| \tan \frac{\theta}{2} \)
3. \(|\hat{\mathrm{A}}+\hat{\mathrm{B}}|=|\hat{\mathrm{A}}-\hat{\mathrm{B}}| \cos \frac{\theta}{2} \)
4. \(|\hat{\mathrm{A}}-\hat{\mathrm{B}}|=|\hat{\mathrm{A}}+\hat{\mathrm{B}}| \cos \frac{\theta}{2}\)
Subtopic:  Resultant of Vectors |
Level 3: 35%-60%
JEE
Please attempt this question first.
Hints
Please attempt this question first.

A vector \({\vec{A}}\) is rotated by small angle \(\mathrm{\Delta}\mathrm{\theta}\) radians \(({\Delta}\theta<<1)\) to get a new vector \(\vec{B}.\) In that case \(|\vec{B}-\vec{A}|\) is: 
1. \(\vec{A}|\Delta \theta|\)
2. \(\mathrm{|\vec{B}| \Delta \theta-|\vec{A}|}\)
3. \(|\vec{\mathrm{A}}|\left(1-\frac{\Delta \theta^2}{2}\right)\)
4. \(0\)
Subtopic:  Resultant of Vectors |
Level 4: Below 35%
JEE
Please attempt this question first.
Hints

advertisementadvertisement