A nuclear reaction given by; \({ }_{Z}^{A} ~{X} \rightarrow{ }_{Z+1}^{A} {Y}+e^{-}+\bar{v}\) represents:
1. | fusion | 2. | fission |
3. | \(\beta^{-} \)decay | 4. | \(\gamma^{-}\)decay |
1. | \({}_{7}^{13}\mathrm{N}\) | 2. | \({}_{5}^{10}\mathrm{B}\) |
3. | \({}_{4}^{9}\mathrm{Be}\) | 4. | \({}_{7}^{14}\mathrm{N}\) |
The energy released by the fission of one uranium atom is 200 MeV. The number of fission per second required to produce 3.2 W of power is (Take, 1 eV = 1.6)
1.
2.
3.
4.
Light energy emitted by stars is due to
1. Breaking of nuclei
2.Joining of nuclei
3. Burning of nuclei
4. Reflection of solar light
A nuclear decay is expressed as:
\(_{6}^{11}\mathrm{C}\rightarrow _{5}^{11}\mathrm{B}+\beta^{+}+\mathrm{X}\)
Then the unknown particle \(X\) is:
1. neutron
2. antineutrino
3. proton
4. neutrino
The rate of disintegration of a fixed quantity of a radioactive substance can be increased by:
1. increasing the temperature.
2. increasing the pressure.
3. chemical reaction.
4. it is not possible.
The mass of \({}_{7}^{15}\mathrm{N}\) is \(15.00011\) amu, mass of \({}_{8}^{16}\mathrm{O}\) is \(15.99492\) amu and \(m_p = 1.00783\) amu. Determine the binding energy of the last proton of \({ }_{8}^{16}\mathrm{O}\).
1. \(2.13\) MeV
2. \(0.13\) MeV
3. \(10\) MeV
4. \(12.13\) MeV
The power obtained in a reactor using \(\mathrm{U}^{235}\) disintegration is \(1000\) kW. The mass decay of \(\mathrm{U}^{235}\) per hour is:
1. \(1\) microgram
2. \(10\) microgram
3. \(20\) microgram
4. \(40\) microgram