A car is negotiating a curved road of radius \(R\). The road is banked at an angle \(\theta\). The coefficient of friction between the tyre of the car and the road is \(\mu_s\). The maximum safe velocity on this road is:
1. \(\sqrt{\operatorname{gR}\left(\dfrac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}\)
2. \(\sqrt{\frac{\mathrm{g}}{\mathrm{R}}\left(\dfrac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}\)
3. \(\sqrt{\frac{\mathrm{g}}{\mathrm{R}^2}\left(\dfrac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\operatorname{s}} \tan \theta}\right)}\)
4. \(\sqrt{\mathrm{gR}^2\left(\dfrac{\mu_{\mathrm{s}}+\tan \theta}{1-\mu_{\mathrm{s}} \tan \theta}\right)}\)

Subtopic:  Banking of Roads |
 88%
From NCERT
NEET - 2016
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

The banking angle for a curved road of radius \(490\) m for a vehicle moving at \(35\) m/s is:
1. tan-1(0.25)
2. tan-1(0.55)
3. tan-1(0.45)
4. tan-1(0.75)

Subtopic:  Banking of Roads |
 86%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
Links
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

Given below are two statements: 
Assertion (A): Improper banking of roads causes wear and tear of tyres.
Reason (R): The necessary centripetal force in that event is provided by the force of friction between the tyres and the road.
  
1. Both (A) and (R) are True and (R) is the correct explanation of (A).
2. Both (A) and (R) are True but (R) is not the correct explanation of (A).
3. (A) is True but (R) is False.
4. Both (A) and (R) are False.
Subtopic:  Banking of Roads |
 69%
From NCERT
To view explanation, please take trial in the course.
NEET 2025 - Target Batch
Hints
To view explanation, please take trial in the course.
NEET 2025 - Target Batch

advertisementadvertisement

A car is moving on a circular track of radius \(50~\text{cm}\) with coefficient of friction being \(0.34.\) On this horizontal track, the maximum safe speed for turning is equal to:
(take \(g=10~\text{m/s}^2\) )
1. \(1.03~\text{m/s}\)
2. \(1.7~\text{m/s}\) 
3. \(1.3~\text{m/s}\)
4. \(1.8~\text{m/s}\) 
Subtopic:  Banking of Roads |
 59%
From NCERT
Please attempt this question first.
Hints
Please attempt this question first.