Moving perpendicular to field \(B\), a proton and an alpha particle both enter an area of uniform magnetic field \(B\). If the kinetic energy of the proton is \(1~\text{MeV}\) and the radius of the circular orbits for both particles is equal, the energy of the alpha particle will be:
1. \(4~\text{MeV}\)
2. \(0.5~\text{MeV}\)
3. \(1.5~\text{MeV}\)
4. \(1~\text{MeV}\)
1. | \(1~\text{GHz}\) | 2. | \(100~\text{MHz}\) |
3. | \(62.8~\text{MHz}\) | 4. | \(6.28~\text{MHz}\) |
1. | \(7.14\) A | 2. | \(5.98\) A |
3. | \(14.76\) A | 4. | \(11.32\) A |
1. | \(1:4\) | 2. | \(2:1\) |
3. | \(1:2\) | 4. | \(4:1\) |
An infinitely long straight conductor carries a current of \(5~\text{A}\) as shown. An electron is moving with a speed of \(10^5~\text{m/s}\) parallel to the conductor. The perpendicular distance between the electron and the conductor is \(20~\text{cm}\) at an instant. Calculate the magnitude of the force experienced by the electron at that instant.
1. \(4\pi\times 10^{-20}~\text{N}\)
2. \(8\times 10^{-20}~\text{N}\)
3. \(4\times 10^{-20}~\text{N}\)
4. \(8\pi\times 10^{-20}~\text{N}\)
In the product
\(\vec{F}=q\left ( \vec{v}\times \vec{B} \right )\)
\(~~~=q\vec{v}\times \left ( B\hat{i}+B\hat{j}+B_0\hat{k} \right )\)
For \(q=1\) and \(\vec{v}=2\hat{i}+4\hat{j}+6\hat{k}\)
and \(\vec{F}=4\hat{i}-20\hat{j}+12\hat{k}\)
What will be the complete expression for \(\vec{B}\)?
1. \(8\hat{i}+8\hat{j}-6\hat{k}\)
2. \(6\hat{i}+6\hat{j}-8\hat{k}\)
3. \(-8\hat{i}-8\hat{j}-6\hat{k}\)
4. \(-6\hat{i}-6\hat{j}-8\hat{k}\)
1. | a parabolic path |
2. | the original path |
3. | a helical path |
4. | a circular path |
1. | will turn towards right of direction of motion |
2. | will turn towards left of direction of motion |
3. | speed will decrease |
4. | speed will increase |
A cylindrical conductor of radius \(R\) is carrying a constant current. The plot of the magnitude of the magnetic field \(B\) with the distance \(d\) from the centre of the conductor is correctly represented by the figure:
1. | 2. | ||
3. | 4. |