The binding energy of deuteron is \(2.2\) MeV and that of \({}_{2}^{4}\mathrm{He}\) is \(28\) MeV. If two deuterons are fused to form one \({}_{2}^{4}\mathrm{He}\) then the energy released is:
1. \(25.8\) MeV 2. \(23.6\) MeV
3. \(19.2\) MeV 4. \(30.2\) MeV
Subtopic:  Nuclear Binding Energy |
 84%
Level 1: 80%+
AIPMT - 2006
Hints

A nucleus with mass number \(240\) breaks into fragments each of mass number \(120.\) The binding energy per nucleon of unfragmented nuclei is \(7.6~\text{MeV}\) while that of fragments is \(8.5~\text{MeV}.\) The total gain in the binding energy in the process is:

1. \(804~\text{MeV}\) 2. \(216~\text{MeV}\)
3. \(0.9~\text{MeV}\) 4. \(9.4~\text{MeV}\)
Subtopic:  Nuclear Binding Energy |
 65%
Level 2: 60%+
NEET - 2021
Hints
Links

How does the binding energy per nucleon vary with the increase in the number of nucleons?
1.  decrease continuously with mass number.
2. first decreases and then increases with an increase in mass number.
3. first increases and then decreases with an increase in mass number.
4. increases continuously with mass number.
Subtopic:  Nuclear Binding Energy |
 81%
Level 1: 80%+
NEET - 2013
Hints

advertisementadvertisement

The binding energies of the nuclei \(A\) and \(B\) are \(E_a\) and \(E_b\) respectively. If three atoms of the element \(B\) fuse to give one atom of element \(A\) and an energy \(Q\) is released, then \(E_a, E_b\) and \(Q\) are related as:
1. \(E_a-3E_b= Q\)
2. \(3E_b-E_a= Q\)
3. \(E_a+ 3E_b=Q\)
4. \(E_b+ 3E_a=Q\)

Subtopic:  Nuclear Binding Energy |
 70%
Level 2: 60%+
Hints

Water is used as a coolant in a nuclear reactor because of its:
1. high thermal expansion coefficient
2. high specific heat capacity
3. low density
4. low boiling point
Subtopic:  Nuclear Binding Energy |
 70%
Level 2: 60%+
NEET - 2024
Hints

Which of the following pairs of nuclei are isotones?
1. \({}_{34}^{74}\mathrm{Se}, {}_{31}^{71}\mathrm{Ca}\) 2. \({}_{42}^{92}\mathrm{Mo}, {}_{40}^{92}\mathrm{Zr}\)
3. \({}_{38}^{81}\mathrm{Sr}, {}_{38}^{86}\mathrm{Sr}\) 4. \({}_{20}^{40}\mathrm{Ca}, {}_{16}^{32}\mathrm{S}\)
Subtopic:  Nuclear Binding Energy |
 86%
Level 1: 80%+
Hints

advertisementadvertisement

If \(M(A,Z)\)\(M_p\) and \(M_n\) denote the masses of the nucleus \({}_{Z}^{A}\mathrm{X}\), proton, and neutron respectively in units of u (\(1\) u = \(931.5\) MeV/c2) and \(BE\) represents its binding energy in MeV, then:
1. \(M(A, Z)=ZM_p+(A-Z) M_n-B E / c^2\)
2. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE}\)
3. \(M(A, Z)=ZM_p+(A-Z) M_n-B E\)
4. \({M}({A}, {Z})={ZM}_{p}+({A}-{Z}) {M}_{n}+{BE/c}^2 \)
Subtopic:  Nuclear Binding Energy |
 70%
Level 2: 60%+
AIPMT - 2008
Hints

The binding energy per nucleon of deuterium and helium atom is \(1.1\) MeV and \(7.0\) MeV. If two deuterium nuclei fuse to form a helium atom, the energy released is:
1. \(19.2\) MeV
2. \(23.6\) MeV
3. \(26.9\) MeV 
4. \(13.9\) MeV
Subtopic:  Nuclear Binding Energy |
 77%
Level 2: 60%+
PMT - 2001
Hints

The Binding energy per nucleon of \(^{7}_{3}\mathrm{Li}\) and \(^{4}_{2}\mathrm{He}\) nucleon are \(5.60~\text{MeV}\) and \(7.06~\text{MeV}\), respectively. In the nuclear reaction \(^{7}_{3}\mathrm{Li} + ^{1}_{1}\mathrm{H} \rightarrow ^{4}_{2}\mathrm{He} + ^{4}_{2}\mathrm{He} +Q\), the value of energy \(Q\) released is:
1. \(19.6~\text{MeV}\)
2. \(-2.4~\text{MeV}\)
3. \(8.4~\text{MeV}\)
4. \(17.3~\text{MeV}\)

Subtopic:  Nuclear Binding Energy |
 68%
Level 2: 60%+
AIPMT - 2014
Hints

advertisementadvertisement

A nucleus represented by the symbol \({}_{Z}^{A}\mathrm{X}\) has:
1. \(Z\) protons and \(A-Z\) neutrons
2. \(Z\) protons and \(A\) neutrons
3. \(A\) protons and \(Z-A\) neutrons
4. \(Z\) neutrons and \(A-Z\) protons
Subtopic:  Nuclear Binding Energy |
 91%
Level 1: 80%+
AIPMT - 2004
Hints