1. | \(2 \pi \over K\) | 2. | \(2 \pi K\) |
3. | \(2 \pi \over \sqrt{K}\) | 4. | \(2 \pi \sqrt{K}\) |
The oscillation of a body on a smooth horizontal surface is represented by the equation, \(X=A \text{cos}(\omega t)\),
where \(X=\) displacement at time \(t,\) \(\omega=\) frequency of oscillation.
Which one of the following graphs correctly shows the variation of acceleration, \(a\) with time, \(t?\)
(\(T=\) time period)
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
The distance covered by a particle undergoing SHM in one time period is: (amplitude = A)
1. zero
2. A
3. 2 A
4. 4 A
1. | \(A + B\) | 2. | \(A_{0}\) \(+\) \(\sqrt{A^{2} + B^{2}}\) |
3. | \(\sqrt{A^{2} + B^{2}}\) | 4. | \(\sqrt{A_{0}^{2}+\left( A + B \right)^{2}}\) |
A particle is executing a simple harmonic motion. Its maximum acceleration is and maximum velocity is . Then its time period of vibration will be:
1. | \(\frac {\beta^2}{\alpha^2}\) | 2. | \(\frac {\beta}{\alpha}\) |
3. | \(\frac {\beta^2}{\alpha}\) | 4. | \(\frac {2\pi \beta}{\alpha}\) |
1. | \(A_1 \omega_1=A_2 \omega_2=A_3 \omega_3\) |
2. | \(A_1 \omega_1^2=A_2 \omega_2^2=A_3 \omega_3^2\) |
3. | \(A_1^2 \omega_1=A_2^2 \omega_2=A_3^2 \omega_3\) |
4. | \(A_1^2 \omega_1^2=A_2^2 \omega_2^2=A^2\) |
The average velocity of a particle executing SHM in one complete vibration is:
1. zero
2. \(\dfrac{A \omega}{2}\)
3. \(A \omega\)
4. \(\dfrac{A \left(\omega\right)^{2}}{2}\)
1. | \(0.01~\text{Hz}\) | 2. | \(0.02~\text{Hz}\) |
3. | \(0.03~\text{Hz}\) | 4. | \(0.04~\text{Hz}\) |