All the surfaces are smooth and springs are ideal. If a block of mass \(m\) is given the velocity \(v_0\) in the right direction, then the time period of the block shown in the figure will be:
1. \(\frac{12l}{v_0}\)
2. \(\frac{2l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
3. \(\frac{4l}{v_0}+ \frac{3\pi}{2}\sqrt{\frac{m}{k}}\)
4. \( \frac{\pi}{2}\sqrt{\frac{m}{k}}\)
1. | \(\sqrt2\) | 2. | \(2\sqrt3\) |
3. | \(4\) | 4. | \(\sqrt3\) |
1. | \(2 \pi \over K\) | 2. | \(2 \pi K\) |
3. | \(2 \pi \over \sqrt{K}\) | 4. | \(2 \pi \sqrt{K}\) |
A spring is stretched by \(5~\text{cm}\) by a force \(10~\text{N}\). The time period of the oscillations when a mass of \(2~\text{kg}\) is suspended by it is:
1. \(3.14~\text{s}\)
2. \(0.628~\text{s}\)
3. \(0.0628~\text{s}\)
4. \(6.28~\text{s}\)
The radius of the circle, the period of revolution, initial position and direction of revolution are indicated in the figure.
The \(y\)-projection of the radius vector of rotating particle \(P\) will be:
1. \(y(t)=3 \cos \left(\dfrac{\pi \mathrm{t}}{2}\right)\), where \(y\) in m
2. \(y(t)=-3 \cos 2 \pi t\) , where \(y\) in m
3. \(y(t)=4 \sin \left(\dfrac{\pi t}{2}\right)\), where \(y\) in m
4. \(y(t)=3 \cos \left(\dfrac{3 \pi \mathrm{t}}{2}\right) \), where \(y\) in m
The oscillation of a body on a smooth horizontal surface is represented by the equation, \(X=A \text{cos}(\omega t)\),
where \(X=\) displacement at time \(t,\) \(\omega=\) frequency of oscillation.
Which one of the following graphs correctly shows the variation of acceleration, \(a\) with time, \(t?\)
(\(T=\) time period)
1. | ![]() |
2. | ![]() |
3. | ![]() |
4. | ![]() |
The distance covered by a particle undergoing SHM in one time period is: (amplitude = A)
1. zero
2. A
3. 2 A
4. 4 A