Select Question Set:
filter

It is found experimentally that \(13.6~\text{eV}\) energy is required to separate a hydrogen atom into a proton and an electron. The velocity of the electron in a hydrogen atom is:
1. \(3.2\times10^6~\text{m/s}\)
2. \(2.2\times10^6~\text{m/s}\)
3. \(3.2\times10^6~\text{m/s}\)
4. \(1.2\times10^6~\text{m/s}\)

Subtopic:  Various Atomic Models |
 77%
Level 2: 60%+
Hints
Links

When an electron transitions from \(n=4\) to \(n=2,\) then the emitted line in the spectrum will be:
1. the first line of the Lyman series.
2. the second line of the Balmer series.
3. the first line of the Paschen series.
4. the second line of the Paschen series.

Subtopic:  Spectral Series |
 87%
Level 1: 80%+
AIPMT - 2000
Hints
Links

The transition from the state \(n=3\) to \(n=1\) in hydrogen-like atoms results in ultraviolet radiation. Infrared radiation will be obtained in the transition from:
1. \(3\rightarrow 2\)
2. \(4\rightarrow 2\)
3. \(4\rightarrow 3\)
4. \(2\rightarrow 1\)

Subtopic:  Spectral Series |
 81%
Level 1: 80%+
AIPMT - 2012
Hints
Links

advertisementadvertisement

The total energy of an electron in the \(n^{th}\) stationary orbit of the hydrogen atom can be obtained by:
1. \(E_n = \frac{13.6}{n^2}~\text{eV}\)
2. \(E_n = -\frac{13.6}{n^2}~\text{eV}\)
3. \(E_n = \frac{1.36}{n^2}~\text{eV}\)
4. \(E_n = -{13.6}\times{n^2}~\text{eV}\)

Subtopic:  Bohr's Model of Atom |
 86%
Level 1: 80%+
NEET - 2020
Hints
Links

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
Given below are two statements: 
Assertion (A): When light consisting of wavelengths corresponding to the Balmer series is incident on a gas containing \(\mathrm{He}^{+}\) ions in the first three excited states - it can be absorbed by the \(\mathrm{He}^{+}\) ions.
Reason (R): All the energy levels of the \(\mathrm{He}^{+}\) ions are the same as those of the \(\mathrm{H}\) atoms.
 
1. (A) is True but (R) is False.
2. (A) is False but (R) is True.
3. Both (A) and (R) are True and (R) is the correct explanation of (A).
4. Both (A) and (R) are True but (R) is not the correct explanation of (A).
Subtopic:  Spectral Series |
 65%
Level 2: 60%+
Hints

If \({\mathit{\lambda}}_{1}\) and \({\mathit{\lambda}}_{2}\) are the wavelengths of the first members of the Lyman and Paschen series respectively, then \({\mathit{\lambda}}_{1}:{\mathit{\lambda}}_{2}\) is:
1. \(1:3\)
2. \(1:30\)
3. \(7:50\)
4. \(7:108\)
Subtopic:  Spectral Series |
 83%
Level 1: 80%+
Please attempt this question first.
Hints
Please attempt this question first.

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly
The zero of the potential energy is so chosen that the total energy of the hydrogen atom in its \(1^{st}\) excited state is zero. Then, the energy of the ground state of the hydrogen atom is:
1. \(-3.4~\text{eV}\) 2. \(-6.8~\text{eV}\)
3. \(-10.2~\text{eV}\) 4. \(-13.6~\text{eV}\)
Subtopic:  Bohr's Model of Atom |
Level 3: 35%-60%
Hints

Whenever a photon is emitted by a hydrogen atom in the Paschen series, it is followed by further emissions of photons, in the Balmer series or the Lyman series.
These photons can have:
1. 2 possible energy values.
2. 3 possible energy values.
3. 4 possible energy values.
4. 5 possible energy values.
Subtopic:  Spectral Series |
 65%
Level 2: 60%+
Hints

The Bohr model for the spectra of a \(H\)-atom:

(a) will not apply to hydrogen in the molecular form.
(b) will not be applicable as it is for a \(He\)-atom.
(c) is valid only at room temperature.
(d) predicts continuous as well as discrete spectral lines.

Choose the correct option:
1. (a), (b) 2. (c), (d)
3. (b), (c) 4. (a), (d)
Subtopic:  Bohr's Model of Atom |
 56%
Level 3: 35%-60%
Hints

advertisementadvertisement

premium feature crown icon
Unlock IMPORTANT QUESTION
This question was bookmarked by 5 NEET 2025 toppers during their NEETprep journey. Get Target Batch to see this question.
✨ Perfect for quick revision & accuracy boost
Buy Target Batch
Access all premium questions instantly

An ionised \(\text H\)-molecule consists of an electron and two protons. The protons are separated by a small distance of the order of angstrom. In the ground state:

(a) the electron would not move in circular orbits.
(b) the energy would be \(2^{4}\) times that of a \(\text H\)-atom.
(c) the electron's orbit would go around the protons.
(d) the molecule will soon decay in a proton and a \(\text H\)-atom.

Choose the correct option:
 
1. (a), (b) 2. (a), (c)
3. (b), (c), (d) 4. (c), (d)
Subtopic:  Bohr's Model of Atom |
Level 3: 35%-60%
Hints

Select Question Set:
filter