The vapour pressure of a pure liquid solvent A is 0.80 atm. When a non-volatile substance B is added to the solvent, its vapour pressure drops to 0.60 atm.
Mole fraction of the component B in the solution is:
1. | 0.50 | 2. | 0.75 |
3. | 0.40 | 4. | 0.25 |
The largest freezing point depression among the following 0.10 m solutions is shown by:
1. | \(\mathrm{KCl}\) | 2. | \(\mathrm{C_6H_{12}O_6}\) |
3. | \(\mathrm{Al}_2(\mathrm{SO_4})_3\) | 4. | \(\mathrm{K_2SO_4}\) |
The equal weight of a solute is dissolved in an equal weight of two solvents A and B to form a very dilute solution. The relative lowering of vapour pressure for solution B has twice the relative lowering of vapour pressure for solution A.
If and are the molecular weights of solvents A and B respectively, then:
1. =
2. = 2
3. = 4
4. = 2
One mole of sugar is dissolved in three moles of water at 298 K. The relative lowering of vapour pressure is:
1. | 0.25 | 2. | 0.15 |
3. | 0.50 | 4. | 0.33 |
Lowering in vapour pressure is the highest for:
1. 0.2 m urea
2. 0.1 m glucose
3. 0.1 m MgSO4
4. 0.1 m BaCl2
If 8 g of a non-electrolyte solute is dissolved in 114 g of n-octane to reduce its vapor pressure to 80 %, the molar mass (in g mol–1) of the solute is:
[Molar mass of n-octane is 114 g mol–1]
1. | 40 | 2. | 60 |
3. | 80 | 4. | 20 |
The vapour pressure of a dilute aqueous solution of glucose is 750 mm of Hg at 373 K. The mole fraction of solute in the solution is-
1. 1/10
2. 1/76
3. 1/7.6
4. 1/35
At room temperature, a dilute solution of urea is prepared by dissolving 0.60 g of urea in 360 g of water. If the vapour pressure of pure water at this temperature is 35 mm Hg, lowering of vapour pressure will be:
(molar mass of urea = 60 g mol–1)
1. | 0.031 mmHg | 2. | 0.017 mmHg |
3. | 0.028 mmHg | 4. | 0.027 mmHg |