200 mL of an aqueous solution contains 1.26 g of protein. The osmotic pressure of this solution at 300 K is found to be 2.57 × 10–3 bar. The molar mass of protein will be:
(R = 0.083 L bar mol–1 K–1):
1. | 61038 g mol–1 | 2. | 51022 g mol–1 |
3. | 122044 g mol–1 | 4. | 31011 g mol–1 |
A 0.1 molal aqueous solution of a weak acid (HA) is 30 % ionized. If Kf for water is 1.86 °C/m, the freezing point of the solution will be:
1. | –0.24 °C | 2. | –0.18 °C |
3. | –0.54 °C | 4. | –0.36 °C |
Isotonic solutions have the same:
1. Vapour pressure
2. Freezing temperature
3. Osmotic pressure
4. Boiling temperature
If 8 g of a non-electrolyte solute is dissolved in 114 g of n-octane to reduce its vapor pressure to 80 %, the molar mass (in g mol–1) of the solute is:
[Molar mass of n-octane is 114 g mol–1]
1. | 40 | 2. | 60 |
3. | 80 | 4. | 20 |
The positive deviations from Raoult’s law mean the vapour pressure is:
1. Higher than expected.
2. Lower than expected.
3. As expected.
4. None of the above
The type of inter-molecular interactions present in:
(a) | n-Hexane and n-octane | (i) | Van der Waal’s forces of attraction |
(b) | NaClO4 and water | (ii) | Ion-dipole interaction |
(iii) | Dipole-dipole interaction |
(a) | (b) | |
1. | (i) | (ii) |
2. | (ii) | (ii) |
3. | (i) | (iii) |
4. | (iii) | (iii) |
Henry’s law constant for the solution of methane in benzene at 298 K is 4.27 × 105 mm Hg. The mole fraction of methane in benzene at 298 K under 760 mm Hg will be:
1. 1.85 × 10–5
2. 192 × 10–4
3. 178 × 10–5
4. 18.7 × 10–5
The solubility of a gas in a liquid decreases with an increase in temperature because:
1. | Dissolution of a gas in a liquid is an endothermic process. |
2. | Dissolution of a gas in a liquid is an exothermic process. |
3. | Gases are highly compressible. |
4. | All of the above. |
To minimize the painful effects accompanying deep sea diving, oxygen diluted with less soluble helium gas is used as breathing gas by the divers. This is an example of the application of:
1. | Raoult's law | 2. | Henry's law |
3. | Ideal gas Equation | 4. | All of the above |
Type of solution | Example |
a. Solid in gas | i. Aerated water |
b. Gas in liquid | ii. Smoke |
c. Liquid in solid | iii. Solution of hydrogen in palladium |
d. Gas in solid | iv. Amalgams |
a | b | c | d | |
1. | i | iii | iv | ii |
2. | ii | i | iv | iii |
3. | iii | i | iv | ii |
4. | iv | i | ii | iii |